If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-10b+2=96
We move all terms to the left:
b^2-10b+2-(96)=0
We add all the numbers together, and all the variables
b^2-10b-94=0
a = 1; b = -10; c = -94;
Δ = b2-4ac
Δ = -102-4·1·(-94)
Δ = 476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{476}=\sqrt{4*119}=\sqrt{4}*\sqrt{119}=2\sqrt{119}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{119}}{2*1}=\frac{10-2\sqrt{119}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{119}}{2*1}=\frac{10+2\sqrt{119}}{2} $
| 2^p-7=8 | | 7x^2+5x-54=0 | | -½x-7=-11 | | -34=6(y-5)-8y | | 4(x+9)=x+15 | | 4(1+2x)=12 | | 10n^2-9=81 | | 8(-9x+4)-5=-3(6x+9) | | 5(3+4x)=115 | | 8+3x=7x-4 | | -49=-x/5 | | -6n^2+12n-8=(n-2) | | x^2=7=88 | | 16y-8=15y-80 | | -6n^2+12n-8=0 | | 11-c=-18 | | x+12x=8 | | 129=6(x-60)+75 | | 10-5x=11-4x | | 4/19=x/19 | | 15y+41=131 | | 12/5=3+x/2 | | 1/3(x-3)^2-4=17 | | 2(x-7)=11 | | 7x+0.4=42.4 | | 13x32=7x+22 | | 5x+4-2x=8 | | 3x^2+19x-110=0 | | 11-3x=17-x | | -1=+−4x1 | | 11-80x=98 | | 2x+10=5(x+2) |